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BACKGROUND: Physical activity is one of the best disease prevention strategies, and it is influenced by environmental factors such as temperature.
OBJECTIVES: We aimed to illuminate the relation between ambient temperature and bikeshare usage and to project how climate change-induced
increasing ambient temperatures may influence active transportation in New York City.
METHODS: The analysis leverages Citi Bike® bikeshare data to estimate participation in outdoor bicycling in New York City. Exposure–response
functions are estimated for the relation between daily temperature and bike usage from 2013 to 2017. The estimated exposure–response relation is
combined with temperature outputs from 21 climate models (run with emissions scenarios RCP4.5 and RCP8.5) to explore how climate change may
influence future bike utilization.

RESULTS: Estimated daily hours and distance ridden significantly increased as temperatures increased, but then declined at temperatures above
26–28°C. Bike usage may increase by up to 3.1% by 2070 due to climate change. Future ridership increases during the winter, spring, and fall may
more than offset future declines in summer ridership.
DISCUSSION: Evidence suggesting nonlinear impacts of rising temperatures on health-promoting bicycle ridership demonstrates how challenging it is
to anticipate the health consequences of climate change. We project increases in bicycling by mid-century in NYC, but this trend may reverse as tem-
peratures continue to rise further into the future. https://doi.org/10.1289/EHP4039

Introduction
Climate change and physical inactivity are both top-priority pub-
lic health issues. Physical activity, including bicycling, has been
linked to lower risks of cardiovascular disease, diabetes, cancer,
hypertension, obesity, and depression (Celis-Morales et al. 2017;
Oja et al. 2011; Warburton et al. 2006). Physical activity behav-
iors are strongly influenced by environmental factors, including
meteorological conditions (Tucker and Gilliland 2007), and peo-
ple are more physically active during warmer seasons than colder
seasons across many different geographical and climatological
profiles (Bélanger et al. 2009; Carson and Spence 2010; Chan and
Ryan 2009; Duncan et al. 2008; Humpel et al. 2002; McCormack
et al. 2010; Merrill et al. 2005; Tucker and Gilliland 2007). In
addition, studies of self-reported or pedometer-measured data
show a positive association between ambient temperatures and
physical activity participation (Balish et al. 2017; Bélanger et al.
2009; Chan and Ryan 2009; Chan et al. 2006; Duncan et al. 2008;
Klenk et al. 2012; Togo et al. 2005). However, most existing work
assumed constant linear relations between temperature and physi-
cal activity, precluding specification of a different relationship
when ambient temperatures become uncomfortably hot. Hot and
humid conditions are known to reduce human performance in
work and sports (Kjellstrom et al. 2016), but limited research has
been done to explore the influence of heat stress on population-

level physical activity behaviors. Although some studies have sug-
gested that anomalously hot conditions pose a barrier to physical
activity, this relationship has not been rigorously quantified
(Baranowski et al. 1993; Merrill et al. 2005; Townsend et al.
2003).

Bicycling is an important and widely used form of physical ac-
tivity, and bikeshare data are publicly available and objectively
describe behaviors in large populations. Consisting of a network of
rental bicycles that can be picked up and dropped off at self-
serving docking stations across a city, bikeshare programs have
become widespread across the United States, Europe, and Asia
since the 1990s (Fishman 2015). Several weather variables, includ-
ing precipitation, sunshine, wind speed, and temperature have been
shown to influence participation in bicycling (Tin Tin et al. 2012).
Here, we focus specifically on the impacts of ambient temperature
on bicycling. Studies conducted in Brisbane, Toronto, and
Washington, DC, have shown positive linear associations between
bikeshare ridership and ambient temperatures (Corcoran et al.
2014; El-Assi et al. 2017; Gebhart and Noland 2014).

In this paper, we explore an alternative not examined in past
work: the possibility that ridership might decline when tempera-
tures become too hot because exercising in hot conditions is
uncomfortable due to strained physiological thermoregulation
(González-Alonso et al. 2008).

Global average temperatures at the end of the 21st century are
likely to be 2°C higher than they were pre-industrial levels; there-
fore, understanding how bicycling behavior changes at hotter
temperatures has implications for the effects of climate change on
physical activity (IPCC 2014). Temperatures in the New York
Metropolitan area have increased ∼ 1:1�C over the past century,
and continuing emissions suggest this trend will endure
(Rosenzweig and Solecki 2001). Climate models project annual
average temperatures in this area will rise by 1.4–3.6°C by 2050
(Rosenzweig and Solecki 2001). It remains uncertain what the
net effects of these temperature trends will be on a population’s
bicycling activity.

We leveraged bikeshare data from Citi Bike® in New York
City (NYC) to explore the relationship between ambient tempera-
ture and bike share usage, and use this relationship to understand
the potential effects of climate change on physical activity.
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Specifically, we address two questions: What is the exposure–
response relationship between daily ambient temperature and Citi
Bike® ridership? How will climate change, through increasing
temperatures, alter Citi Bike® ridership in the future?

Methods

Data Acquisition and Processing
Citi Bike® in New York City. Citi Bike® is the largest bikeshare
program in the United States, with more than 10,000 bikes and
600 stations across Manhattan, Brooklyn, and Queens (Figure 1)
(Citi Bike 2018). Users can take bikes from any station and return
them to the same or a different station, and they have the option to
subscribe to Citi Bike® or to pay separately for each ride (Citi
Bike 2018). The program is marketed as a way to save money,
save travel time, get exercise, and decrease automobile-generated
air pollution. The cost of one trip (up to 30 min long) is $3 and
customers have the option to pay $12 per day or $169 per year (Citi
Bike 2018). In November 2018, there were an average of 39,335
bike trips per day and 147,000 members (NYC Bike Share 2018).

Citi Bike® data. Records of Citi Bike® rides in New York
City between June 2013 and September 2017 were obtained from
the Citi Bike® website (Citi Bike 2019). Each observation repre-
sents one bike ride and provides the length of the ride in seconds
and the geocoded pickup and drop-off station locations. To have
gender and age information on riders, we limited the data to only
Citi Bike® subscribers. The data set was then manipulated to cre-
ate two outcome variables: daily total hours ridden and daily av-
erage distance ridden. Daily total hours ridden was calculated by
summing the duration (in hours) of all rides taken throughout a
day. Hence, it is a daily measure that provides information on

both the number of rides taken in a day and the duration of those
rides. Daily average distance is the average of all daily ride dis-
tances in kilometers. This outcome measure represents the aver-
age distance of one ride during that day. Ride distances were
calculated for each individual ride using start and end bike station
latitude and longitude coordinates. Coordinates are provided in
decimal degrees format, which was truncated to the millionths
decimal place. The R package, gmapsdistance (version 3.4; R
Development Core Team), available on Github, was used to esti-
mate ride distances (Melo et al. 2016). This package employs
Google’s application programming interface service to find mini-
mum distance paths while prioritizing bike infrastructure. Trip
segments where no bike infrastructure was available were routed
through city streets (excluding highways).

Meteorological Data. Daily measurements of minimum tem-
perature, maximum temperature, precipitation, and relative hu-
midity were obtained from the NOAA National Centers for
Environmental Information (NCEI) climate data online tool. To
approximate New York City’s Citi Bike® area, observations
were extracted from the Central Park monitor in New York.
Daily average temperature was calculated using daily minimum
and maximum temperatures. Although average temperature dur-
ing times that people are awake would have been preferable for
this analysis, we did not have access to hourly temperature data.
Raw temperature data is shown in the Figure S1.

Heat index data. Meteorological observations were obtained
from NOAA’s National Climatic Data Center (NCDC; https://
www.ncdc.noaa.gov/cdo-web/). One-minute and hourly auto-
mated surface observing system (ASOS) data were downloaded
for the Central Park, New York City meteorological observa-
tion station. During the months of June through December

Figure 1. Citi Bike® docking stations in New York City. New York City boroughs are outlined in gray, whereas Citi Bike® docking stations are represented by
red dots.
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2013, weather data were gathered for LaGuardia Airport
because these months’ observations were unavailable for the
Central Park weather station. Heat index (HI) values were cal-
culated using hourly temperature and relative humidity values
as inputs to the Rosthfusz equation used by the National
Weather Service (2014). Daily HI was calculated as an average
of hourly HI.

Climate change maximum temperature projections.Monthly
mean daily maximum temperature change factors were computed
over 2040–2069 for 21 climate models run under the representa-
tive concentration pathways (RCP) RCP4.5 moderate and
RCP8.5 high emissions scenarios for the 0.25-degree grid cell
containing central New York City (42 total runs) (IPCC 2014;
Moss et al. 2010). These data were obtained from the NASA
Earth Exchange Global Daily Downscaled Projections (GDDP)
data set (NASA 2014), comprising downscaled and bias corrected
(BCSD) output from the Coupled Model Intercomparison Project
5 (CMIP5) archive (Taylor et al. 2012). We opted to analyze near-
term climate projections both because these model runs were read-
ily available and because we believe that this time frame is most
relevant to urban planners and public health officials.

Monthly, rather than annual or seasonal, warming factors
were used to allow for variable seasonal warming across models,
incorporating changes in seasonal variability from the climate
models while omitting projected changes in daily variability
whose reliability is more uncertain. The monthly change factors
were computed relative to each models’ historical run base period
of 1980–2005 prior to the starting date of the RCP scenarios.
Monthly warming factors were applied to the original maximum
daily temperature time series from the NCEI station data, provid-
ing a sample of 41 plausible future maximum temperature daily
time series.

Statistical Analyses
Dose–response relationships. The relationships between temper-
ature indicators (average temperature, minimum temperature,
maximum temperature, heat index) and outcome indicators (total
hours ridden, average distance) were assessed using nonparamet-
ric generalized additive models (GAMs), which allow for nonlin-
ear relationships between predictors and the outcome. This
modeling framework is widely used to study the association
between climate data and health outcomes (Peng and Dominici
2008). Separate models were fit for every combination of temper-
ature predictor and outcome variable (eight total models). Each
model controlled for autocorrelation in the outcome data [using a
single-lag autoregressive (AR1) term], day of the week, precipita-
tion, long-term trend in bike ridership, and seasonal trends in
ridership.

Penalized regression splines were used to control for long-
term and seasonal trends observed in the Citi Bike® ridership
data (Figure 2). These splines capture nonlinear trends in the bike
ridership data on seasonal and yearly timescales. Their inclusion
allowed us to control for unmeasured predictors of seasonal
cycles in visitors such as hours of daylight and secular trends in
the number of bikes and Citi Bike® infrastructure expansion (i.e.,
variables that co-vary in time with our outcome variables).
Hence, we are analyzing the associations of anomalous tempera-
ture variability with sub-seasonal changes in Citi Bike® ridership.
Smoothing parameters of 6 degrees of freedom were chosen for
both total hours ridden and total distance ridden. Sensitivity anal-
yses varied the degrees of freedom from 2 to 10. Model
goodness-of-fit was determined using the generalized cross vali-
dation (GCV) statistic.

Further, we used breakpoint models to test the hypothesis that
the temperature–bike ride relationship changes at a specific

temperature. Breakpoint models assume piecewise linear relation-
ships between the response and explanatory variables and can,
therefore, detect threshold, or breakpoint, temperatures (Muggeo
2003). These models were estimated using the R package, seg-
mented (version 3.0; R Development Core Team), (Muggeo 2003,
2008), which utilizes generalized linear models to estimate the
piecewise regression and associated breakpoints. Initial values for
the breakpoint temperatures were specified over a range indicated
by the GAM exposure–response plots. The breakpoint regressions
included all of the same covariates as the GAMs.

We also conducted stratification analyses by rider age, rider
gender, and weekday versus weekend rides. The age of subscrib-
ers was categorized as 18–25, 26–35, 36–45, 46–55, 56–65, or
>65 y of age. The weekday versus weekend stratification analysis
was chosen with the aim of understanding whether the exposure–
response relationship differed based on commuting versus leisure
rides.

Physical activity projections. Maximum temperature projec-
tions were used in conjunction with the fitted threshold dose–
response relationship to produce estimates of future Citi Bike®
usage. First, a segmented regression was used with existing maxi-
mum temperature data (2013–2017) as described above but without
an autocorrelation term. Omission of the autocorrelation term was
necessary for generating predictions. We then generated predic-
tions of daily total hours ridden and average distance ridden using
the fitted model for 2014, 2015, and 2016 (our three complete years
of data) using average precipitation from the period 2013–2017 for
all days. Precipitation was held constant across the projection mod-
els because future projections for precipitation are uncertain and
unreliable and to isolate the effects of changing temperature.

Next, the same fitted model was used to generate future pre-
dictions of total daily hours ridden and average distance ridden
using daily projected maximum temperature from each of the 42
climate model runs (21 models run for each of the two emissions
scenarios, RCP4.5 and RCP8.5). Percentage changes in total
hours ridden and average distance ridden between the historical
model predictions and the future model predictions were calcu-
lated for 2014, 2015, and 2016. These percentages were then
averaged to produce an average annual percentage change in
total hours ridden and average distance ridden on Citi Bike®. In
addition, we computed the inter-annual variability in percentage
change using the standard deviation of estimated percentage
changes across years for all 21 models in each emissions sce-
nario. Uncertainty related to climate projections was repre-
sented using the standard deviation in projected ridership
measures across the model runs.

Seasonal projection analyses followed a similar methodology,
but they generated separate projections for summer (June–August),
fall (September–November), winter (December–February), and
spring (March–May). Average seasonal projected changes in total
hours and average distance ridden were calculated as the mean per-
centage change in each season across 2014, 2015, and 2016.

Results

Citi Bike® Ridership
The Citi Bike® data set contained 43 million Citi Bike® rides and
an average of 28,920 rides per day. Figure 2 shows that tempera-
ture observations and bikeshare variables have synchronized sea-
sonal dynamics. The peak total hours and average distances
ridden occurred during the warmer months of the year (March–
October). More rides were taken on weekdays than on weekends.
A bimodal pattern of hourly usage was observed during week-
days, representing commuting behavior, whereas a unimodal pat-
tern appeared on weekends. The highest hourly usage on the
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weekend occurred at 1600 hours, which is generally the warmest
time of day (see Figure S2). Table S1 compares sociodemo-
graphic characteristics between the population living within the

Citi Bike® service area (Figure 1) and the general New York
City population. We found that education levels and age distribu-
tions were similar, but that there was a higher percentage of white

Figure 2. Temperature and Citi Bike® data. Daily time series from July 2013 to September 2017 in New York City of (A) maximum temperature, (B) total
hours ridden daily on Citi Bike®, and (C) average distance ridden daily on Citi Bike®. Data was obtained from the Citi Bike® website (https://www.citibikenyc.
com/system-data).
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people and lower percentage of people living in poverty within
the Citi Bike® service area than in the general New York City
population.

Estimated Effects of Temperature on Citi Bike® Ridership
The results from the GAM models showed a robust threshold
relationship between temperature and both Citi Bike® daily hours
ridden and average distance ridden. Of the four temperature vari-
ables, maximum temperature best predicted ridership (i.e., had
the smallest GCV statistic). We present results from maximum
temperature models, but models run with other temperature pre-
dictors produced very consistent results (see Figures S3–S5).

Nonlinear GAMs showed an almost linear increase in both
total hours ridden and average distance ridden with increasing
maximum temperature up to a threshold temperature (Figure
3A,C). Above this temperature, both ridership measures had a
nearly linear negative association with increasing temperature.
The estimated threshold maximum temperatures were 28.1°C
[95% confidence interval (CI): 27.3, 28.9] and 25.8°C (95% CI:
25.2, 26.3) for total hours ridden and average distance ridden,

respectively (Figure 3B,D). These thresholds are at the 78th per-
centile (28.1°C) and 70th percentile (25.8°C) of the maximum
temperature distribution for New York City. Both total hours rid-
den and average distance ridden increased significantly with maxi-
mum temperature up to the threshold temperature, above which
they decreased significantly with increasing maximum temperature
(see Table S2). Hence, although higher maximum temperatures
were generally associated with greater Citi Bike® ridership, rider-
ship declined on days with temperatures above the 26°C–28°C
thresholds. Sensitivity analyses varied the degrees of freedom
from 2 to 10, and results were similar irrespective of the degrees
of freedom specified (see Figures S6–S9).

One potential concern in interpreting these results is that peo-
ple may ride less on hotter days, but more on subsequent days. We
investigated this possibility using lagged analyses of the effects of
maximum temperature on bike riding. Results showed that the
association between temperature and total hours ridden and aver-
age distance ridden was most pronounced on the current day
(lag 0), was similar but weaker with a 1-d lag, and was gone with
a 2-d lag (see Figure S10). Hence, we did not see any evidence of
displacement effects in ridership due to hotter temperatures.

Figure 3. Generalized additive model (GAM) and segmented regression results. (A) Nonlinear dose–response curve produced by GAM predicting total hours
ridden using maximum temperature. The curve is shown as the effect of daily maximum temperature on differences between hours ridden and average hours
ridden (left y-axis, black solid line) with 95% confidence intervals (gray shaded area). Density of daily maximum temperature is represented by the red histo-
gram. (B) The estimated segmented linear relationship between maximum temperature and total daily hours ridden. The threshold temperature 28.1°C is repre-
sented by the dashed vertical line. (C) and (D) are as for (A) and (B), but predicting the daily average distance ridden with an estimated threshold temperature
of 25.8°C.
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Stratification Analyses
To examine potential variations in this bicycling–temperature rela-
tionship across different subpopulations, we performed stratifica-
tion analyses based on the rider gender, rider age (categorized as
18–25, 26–35, 36–45, 46–55, 56–65, or >65 y) (see Table S3), and
weekday versus weekend rides. The same threshold relationships
as seen for the general population were observed across all subpo-
pulations (see Figures S11–S30 and Tables S4–S7). However, the
total hours ridden analyses showed that estimated threshold temper-
atures declined with age (Figure 4A). This implies that ridership
among older subpopulations starts declining at lower temperatures,
perhaps due to poorer thermoregulation (Van Someren et al. 2002).
The same relationship was not observed in the distance analyses
(Figure 4B), suggesting that older riders took fewer rides on days
with higher temperatures but not shorter rides. Estimated threshold
maximum temperatures were similar among male and female sub-
populations and between weekday and weekend rides (see Tables
S4–S7).

Climate Change Projections
Using the NASA GDDP data set (NASA 2014), we projected
mean monthly maximum temperature warming factors for 2040–
2069 from a suite of 21 climate models run under the RCP 4.5
and RCP 8.5 climate scenarios. We then applied these factors to
the temperature observations, yielding a suite of 42 plausible
future daily maximum temperature time series (Figure 5A).
Twenty-one percent of observed maximum temperatures from
the period 2013–2017 were above the estimated threshold for
total hours ridden (28.1°C), whereas 30% and 32% (multi-model
mean for RCP4.5 and RCP8.5, respectively) of projected future
maximum temperatures were above this threshold.

We projected robust increases in annual total hours and av-
erage distance ridden in response to warming temperatures over
the period 2040–2069 across all emissions scenarios and cli-
mate models (Figure 5B,C). Average annual hours ridden
[mean± standard deviation (SD)] increased by 2:6± 1:3% and

3:1± 1:6% under the emissions scenarios RCP4.5 and RCP8.5,
respectively. Similarly, annual average distance ridden increased
by 0:59± 0:18% and 0:74±0:19% under the emissions scenarios
RCP4.5 and RCP8.5, respectively. These average projected
changes were greater than the interannual variability in projected
changes.

Although the net annual predictions were positive, total hours
ridden and average distance ridden were projected to decrease
during the summer season (June–August) (Figure 6). Projected
summer maximum temperatures under the RCP4.5 scenario
would result in a 2:9±0:13% decrease in total hours ridden and a
0:6± 0:2% decrease in average distance ridden. Further declines
were seen under the RCP8.5 scenario, with a 4:5± 1:6% and
0:9± 0:3% decrease in total hours and average distance ridden,
respectively. However, on an annual basis, the projected decreases
during the summer are offset by the increases across the winter,
spring, and fall seasons (Figure 6).

Discussion
This paper presents a novel use of Big Data to investigate the
relationship between a bike share program participation, ambient
temperature, and climate change in a metropolitan area. We
found a robust threshold relationship between ambient tempera-
ture and both total hours ridden and average distance ridden with
Citi Bike®. In addition, we predicted increases in annual Citi
Bike® usage due to climate change by mid-century. Projected
increases during the winter, fall, and spring are larger than the
projected decreases during the summer months.

Notably, our results closely align with those of Obradovich
and Fowler (2017), who found that the self-reported probability
of being physically active across the United States had a thresh-
old effect with temperature. They also projected future increases
in the probability of being physically active in the northeastern
United States due to climate change (Obradovich and Fowler
2017). The agreement of these results with our results enhances
confidence in our conclusions and suggests that temperature

Figure 4. Threshold temperature estimates from age stratification analyses. Estimates for (A) total hours ridden on Citi Bike®, and (B) average distance ridden
on Citi Bike®. Estimated threshold temperatures are represented as black dots with 95% confidence interval error bars.
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influences bikeshare use and general physical activity in similar
ways. Indeed, bikeshare usage followed seasonal patterns similar
to other measures of physical activity, with higher ridership dur-
ing the warmer months (Bélanger et al. 2009; Carson and Spence
2010; Chan and Ryan 2009; Duncan et al. 2008; Humpel et al.
2002; McCormack et al. 2010; Merrill et al. 2005; Tucker and
Gilliland 2007).

The projected annual increases in Citi Bike® ridership across
New York City may be good news for public health but should be
interpreted with caution. Our near-term projections show that
increased ridership during the winter, spring, and fall outweighs
the decreased ridership projected for during the summer. However,
as temperatures continue to rise beyond 2070, decreased ridership
in the warm months may start to dominate. In other words, larger
shifts in the maximum temperature distribution above the esti-
mated threshold may eventually shift the scales, resulting in net
bicycling declines. In addition, these net increases in bicycling
may not apply in cities with hotter average temperatures. Future
work should test the stability of our results by using temperature
projections further into the future and in warmer and colder geo-
graphic locations.

In addition, it is important to emphasize that the projection
analyses do not take into account the other complex determinants
of bicycling behavior and how they may interact with temperature
changes. Physical activity behavior, including bicycling, has been
described using the socio-ecological model, which emphasizes
individual, social, and environmental determinants (Giles-Corti
and Donovan 2002). For example, physical activity behaviors can
be affected by one’s education, gender, diet, social structure, social
support, perceived neighborhood safety, and many other factors.
Our projection model holds all of these other determinants constant
into the future, changing only ambient temperature. Existing work
has also shown that precipitation and high humidity are deterrents
for bicycling and other outdoor physical activity (Gebhart and
Noland 2014; Winters et al. 2007). We did not include humidity
or precipitation in our projection analysis because downscaled
projections of these variables are unreliable, but it is important
to note that shifts in humidity and precipitation—especially if
they are seasonal—will likely influence future bicycling as
well. Last, we did not account for replacement behaviors in our
projections. For instance, our data does not account for
switches in physical activity mode, such as someone deciding

Figure 5. Projected annual changes in Citi Bike® ridership due to climate change. (A) Density plots of observed maximum temperature from 2013 to 2017
(red, solid line), multi-model mean projected maximum temperature from 2040 to 2069 under RCP4.5 (green, dashed line) and RCP8.5 (blue, dotted line). The
black vertical dashed and dotted lines represent the threshold maximum temperature value estimated from the segmented regression for total hours ridden
(28.1°C) and average distance ridden (25.8°C), respectively. (B) Average annual percentage change in the predicted total hours ridden from 2013 to 2017 to
2070 under the RCP4.5 and RCP8.5 emissions scenarios. The box plots show the distribution of estimates from the 21 climate models for both emissions sce-
narios RCP4.5 and RCP8.5. (C) is as for (B), but for average distance ridden. Boxes extend from the 25th to the 75th percentile, horizontal bars represent the
median, the upper whisker extends to the highest value no larger than the 75th percentile plus 1:5 × IQR (interquartile range), the lower whisker extends to the
lowest value no lower than the 25th percentile minus 1:5× IQR, and the dots represent outliers.
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to cycle indoors or go for a walk instead of using Citi Bike® on
a hot day. Hence, our results provide useful insights into the
possible impacts of increasing temperatures on bicycling and
outdoor exercising, but they should not be viewed as a prescrip-
tive representation of future conditions. To improve our under-
standing of how bicycling behavior may shift in the future, we
must approach the research with a holistic perspective, taking
into account individual, social, and other environmental influ-
ences (Humpel et al. 2002).

Our model also does not account for uncertainty in temp-
erature thresholds; instead, it assumes no future societal or
individual-level adaptation to hotter conditions. Similar work
looking at the impacts of heat on mortality have demonstrated

declining mortality risk due to increased temperature over time
in multiple countries (Bobb et al. 2014; Gasparrini et al. 2015).
Hence, it is possible that our estimated temperature thresholds
above which bicycling declines will become higher in the future
due to adaptation, both societal and physiological, which will
lead to improved tolerance of hotter temperatures. Future work
should investigate whether these effects of increasing tempera-
ture on bicycling and physical activity are robust over the next
several decades.

Although past studies have been hampered by small sample
sizes due to the difficulty of collecting physical activity data
(Chan and Ryan 2009; Chan et al. 2006; Togo et al. 2005), our
analysis benefitted from an extremely large sample of 37 million

Figure 6. Projected seasonal changes in Citi Bike® ridership due to climate change. (A) Average seasonal percentage change in the predicted total hours ridden
from the period 2013–2017 to 2070 under the RCP4.5 and RCP8.5 emissions scenarios. Summer includes June–August, fall includes September–November,
winter includes December–February, and spring includes March–May. The box plots show the distribution of estimates from all 21 climate models for both
emissions scenarios RCP4.5 (light blue) and RCP8.5 (dark blue). (B) as for (A) but for average distance ridden. Boxes extend from the 25th to the 75th percen-
tile, horizontal bars represent the median, the upper whisker extends to the highest value no larger than the 75th percentile plus 1:5× IQR (interquartile range),
the lower whisker extends to the lowest value no lower than the 25th percentile minus 1:5× IQR, and the dots represent outliers.

Environmental Health Perspectives 037002-8 127(3) March 2019



Citi Bike® rides. This study demonstrates how freely available
bikeshare data can be used to tackle difficult questions related to
physical activity, population movement, and the environment.
Bikeshare programs exist in more than 300 cities across North
America, South America, Europe, and Asia (O’Brien 2018). This
vast network of bicycling systems presents a novel look into
physical activity behaviors around the world. Future work should
investigate the links between climate, temperature, and bicycling
across different geographies. International analyses can elucidate
the robustness of the temperature response functions we found in
New York City. In addition, we can identify other social, cultural,
physical, and climatological variables that may modify the effects
of temperature on physical activity.

Conclusion
This study contributes to the limited literature on the indirect
health effects of climate change caused by altering physical activ-
ity behaviors. We provide evidence that temperatures above 28°C
are associated with declines in population bicycling behaviors
across New York City. Our results are likely specific to this area
and type of bike share program, and future work should investi-
gate how these relationships vary across different climates and
social structures. Given the critical role of physical activity in
human health, it is vital to understand how climate change will
modify physical activity.
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